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TSE robustness detection on

semi-local damage flexibility of bridge

structure health

Huang Li-pu1, Feng Wan∗ 2, 3, Hu Bai-qing4,
Chang Zhu-Gang5, Huang Yang-zhou1

Abstract. In order to improve the robustness of bridge structure health detection algorithm
to the time synchronization error (TSE) of synchronous protocol, a kind of semi-local TSE robust-
ness test method of bridge structure health based on the damage flexibility method is proposed.
This paper describes the semi-local TSE modal analysis and implementation method for frequency
domain decomposition (FDD) of damage detection and positioning; Meanwhile, for the purpose
of decreasing the data transmission from sensor node to the central unit, by virtue of semi-local
processing method, this paper makes the local processing for every sensor node datum, makes the
fast Fourier transform (FFT) for the detected vibration signal, transmits the obtained FFT value
to the central unit or cluster head to make further processing, and then achieves the detection and
localization of damage signals through flexibility method. The experimental result shows that, the
method proposed by this paper is characterized by more sensitive damage detection performance,
as well as stronger robustness of TSE influence.

Key words. Bridge structure effect, Structure health, Semi-local, Modal identification, Time
synchronization error, Automatic monitoring

.

1. Introduction

In the structure health monitoring of the bridge, every kind of structure has a
tendentious vibration, shown as the greater vibration amplitude on some frequencies
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than other frequencies [1∼2]. The theory of modal identification method is based
on the influence of structure physical property on modelshape. For this reason,
any physical property change of the structure may cause the detectable mode shape
change. For the bridge detection, it mainly identifies and judges the external excita-
tion source vibration incurred from wind load and traffic load, by a feat of the data
fusion processing technology of wireless sensor network [3]. Aiming at the structure
health detection of bridge, this paper carries out the algorithm design based on the
method as shown in Literature [10]. However, different the centralized modal iden-
tification algorithm adopted in the Literature [10], this paper applies the semi-local
modal identification method, and takes TSE problem of synchronous protocol into
consideration at the same time, on the basis of damage flexibility, to achieve the
bridge damage detection and localization based on WSNs detection signal.

2. System model and background

2.1. Background description

The system model adopted in this paper is similar to the model as shown in Liter-
ature [10], but, the difference is replacing the centralized processing with semi-local
processing. Assuming that the wireless sensor network is equipped with n sensor
nodes, the data is acquired with Sampling Frequency FS and original data packet
having Sample L. In the existing TSE index, the sensor acquisition data obtained
at different times have the same sampling frequency. The schemes of centralized
processing and semi-local processing are respectively as shown in Fig.1.

Wireless sensor node

CPU node

Data transmission route

Semi-local wireless sensor 

node processor

CPU node

Data transmission route

 
  

Fig. 1. Schemes of centralized processing & semi-local processing

In order to calculate the mode shape, the first FDD step is to determine the cross
spectral density (CSD) of sensor output-signal matrix. Normally, the CSD matrix
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can be determined by acquiring the mean CSD matrix through several data. The
second CSD step is to apply the singular value decomposition (SVD) for the mean
CSD matrix of every discrete frequency. The maximum values of singular value
matrixes are collected into one vector, and the inherent frequency of the system can
be identified from its peak value.

2.2. Data acquisition

The bridge structure health monitoring system designed in this paper contains
three algorithm layers: (1) For data pre-processing; (2) Feature extraction layer;
(3) Modal identification layer, the specific structure description of the system is
as shown in Fig.2. For the purpose of verifying the efficiency of proposed system
structure detection algorithm, the three-span bridges are selected to be the research
objects. The wireless sensor nodes are set at the key joints of bridge structure,
and the accelerated speed detected by the sensor will be transmitted at a specific
sampling interval, specifically shown as:

Di = {d1, d2, · · · , dt, · · ·} . (1)

By operating the sampled sample data every day, the bridge structure status can
be monitored.
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Fig. 2. Bridge structure monitoring system

In Fig.1, what in the Expression [Xl, Yl] ← [Xu] are the sample data and label,
and [Fl, Yl] is the signal feature of bridge structure health.
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2.3. Data pre-processing

The sensor sample data can be expressed as the time series or infinite vector.
During the sample pre-processing process, segment the sample expressed by time
series and express it to the form of time frame, as shown in Fig.3. In case the
number of time frames attached to the bridge is r, the sampling frequency of Sensor
R is f , and time frame is t. Connect the sample data in series and obtain:

x = (p1, p2, · · · , pr) ∈ Rr×t×f . (2)

As the label is y ∈ {1, 2, · · · , C} and C is the number of modal types, the sample
set {x, y} can be built, and further obtain:

((x
(1)
l , y(1)), (x

(2)
l , y(2)), · · · , (x(m)

l , y(m))} . (3)

x
(1)
u , x

(2)
u , · · · , x(k)

u ∈ Rr×t×f . If the bridge is in healthy status, the unlabeled
form of k samples obtained is: x(1)
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  Fig. 3. Sample pre-processing

For the sparse coding process of feature, please refer to the relevant literatures,
without unnecessary details given hereof.

3. Modal identification method

3.1. Centralized modal identification

According to the model as shown in Literature [10], considering the single sensor
node in network as the reference sensor, all other sensor nodes try to make clock
synchronization with the reference sensor. Assuming that two sensor nodes measure
the acceleration data at the same location i, considering a sensor clock as reference
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clock and its time as the reference time, the sensor acquires the data by reference
clock, and other sensor nodes acquire the data their local clocks. At the same location
i, the sampling data sets of reference node and other sensor nodes are respectively
expressed as xi (t) and x̃i (t), and the relation of these two is shown as follows:

x̃i(t) = xi((1 + αi)t+ δti) . (4)

Where, αi is the clock drift rate, normally less than 50µs; δti is the clock drift
rate of other sensor nodes with respect to the reference sensor node. Therefore, for
the relatively short frame, αi can be ignored, and then obtain:

x̃i(t) = xi(t+ δti) . (5)

For the specific vibration mode structure, FFT transformation form of sensor
node i to sample data x̃i(t) is:

X̄i(p) ≈ Xi(p)e
j 2π∆n·p

Nf . (6)

Where, Xi(p) is the FFT transformation of sample xi(t); p is the discrete fre-
quency index relevant to the inherent frequency of m order; Nf is the number of
frequency samples outputted by FFT; ∆n is the TSE expression of sample number.
The TSE with given time is ∆nTs = ∆n/Fs, where Ts is the sampling period. Set
wm = 2πfm is the angular frequency. Based on the phase deviation wmδti, the FFT
transformation form of x̃i(t) obtained is:

X̄i(p) ≈ Xi(p)e
jwmδti . (7)

In order to identify the mode shape, the cross spectral density can be derived as:

D(wm) = D(p) =


X1 (p)
X2 (p)

...
Xn (p)

 [X∗
1 (p) , X∗

2 (p) , · · · , X∗
n (p)] (8)

For the SVD decomposition of CSD matrix made at location w = wm in the
Formula (5), it can be calculated as:

D(wm)D∗(wm) = U
∑∑∗

U∗ (9)

In the formula,
∑

and U respectively are the singular value matrix and left
singularity decomposition matrix.

∑
is the diagonal matrix containing feature value.

Themth model shape assigned byU1 can be given at the first line ofU . CSD singular
value decomposition relevant to incompletely synchronizing signals is given:

D̃ (ωm) D̃∗ (ωm) = ŨΣΣ Ũ∗ (10)

Similar to the complete synchronization, the first line of is Ũ the model estimation
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of order m, expressed as Ũ1:

Ũ1 =



ejwm(δt1−δtr )U1,1

Ur,1

ejwm(δt2−δtr )U2,1

Ur,2
...

ejwm(δtn−δtr )Un,1
Ur,n


. (11)

3.2. Semi-local modal identification

In the centralized processing sensor node i, for the original data acquisition, TSE
index between the reference node and sensor node i can be calculated by utilizing
δti. When a group of L samples are received by a sensor node, assume that it is
suitable for making conducting calculation of original data received, and create Nf
frequency sample which is sent to the intermediate node. Meanwhile, we think that,
for every sensor node i, FFT frequency sample is transmitting based on TSE βti. For
every sensor node i, FFT frequency sample Xi (p), i = 1, 2, · · · , Nf is transmitting
at a link experiencing TSE. The calculation form of is:

βti =
∆p

Fs
. (12)

In the formula, ∆p signifies the number of delay data samples received at central
unit, and also signifies the number of delay samples X̃i (p) transmitted by FFT
frequency sample. Assuming that we use the sample sampling frequency at the
sending node and central node, and one received sample signifies a sample of FFT
data packet sent by the sensor node, obtain:

∆p = ∆n
Nf
Fs

. (13)

Based on the centralized processing result of specific mode structure, the FFT
transformation responding to x̃i (t) is similar to the structure as shown in Formula
(4). For the specific node i, the number of delay samples in time domain are in
direct proportion to the frequency. Hence, FFT frequency sample received by the
central node can be signified as:

Ỹi (p) = X̃i (p+ ∆p) ≈ X̃i

(
p+ ∆n

Nf
FS

)
. (14)

On account of different TSE among nodes, the Formula (14) can be signified as:

Ỹi (p) = X̃i (p+ βpi) . (15)

Based on the Formula (7), with generalization made for n nodes, the Formula
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(15) can be further expressed as:
Ỹ1 (p)

Ỹ2 (p)
...

Ỹn (p)

 =


X1 (p+ βp1) ejwm(δt1+βt1)

X2 (p+ βp2) ejwm(δt2+βt2)

...
Xn (p+ βpn) ejwm(δtn+βtn)

 . (16)

Its vector form is:

Ỹ (p) =


Ỹ1 (p)

Ỹ2 (p)
...

Ỹn (p)


T

=


X1 (p)
X2 (p)

...
Xn (p)


T

∗


δ (p+ βp1)
δ (p+ βp2)

...
δ (p+ βpn)



ejwm(δt1+βt1)

ejwm(δt2+βt2)

...
ejwm(δtn+βtn)


T

= (X (p) ∗∆)P (17)

Where, X (p) is the input test vector given in the frequency domain; the symbol
“*” signifies the consideration of convolution operation of frequency p; ∆ is the Dirac
pulse vector displacement in frequency domain. In the frequency domain, TSE given
by βpi can be regarded as the frequency displacement of βpi and then taken as the
convolution of receipt signal, of which its Dirac δ function is δ (p+ βpi). This δ
function creates a displacement corresponding to X̃i (p) and Ỹi (p). In order to
achieve the model identification of Ỹ (p), the cross-spectral density function form is:

D̃y (wm) = D̃y (p) =


Ỹ1 (p)

Ỹ2 (p)
...

Ỹn (p)

(Ỹ ∗
1 (p) Ỹ ∗

2 (p) · · · Ỹ ∗
n (p)

)

= P T
(
XT (p) ∗∆T

)
(X∗ (p) ∗∆∗)P ∗ . (18)

In order to achieve the modal identification, for the perfect synchronization, make
eigenvalue decomposition on D̃y (wm) and D̃∗

y (wm), the delay due to ∆ in the vector
X (p) can be known, with following form obtained:

(
XT (p) ∗∆T

)
(X∗ (p) ∗∆∗) =

[
A0 BT0
B0 C0

]
. (19)

According to the Formula (15), the prdocut of D̃y (wm) and D̃∗
y (wm) can be

decomposed as follows:

D̃y (wm) D̃∗
y (wm) =

[
A BT

B C

]
. (20)

Based on above two forms, by virtue of the relation among A0, B0 and C0, as
well as A, B and C, the eigenvalue decomposition form of D̃y (wm) D̃∗

y (wm) can be



868 HUANG LI-PU, FENG WAN, HU BAI-QING, CHANG ZHU-GANG, HUANG YANG-ZHOU

deduced.

4. Damage detection and location based on time
synchronization

4.1. Damage flexibility method

Flexibility method is a kind of damage detection method based on vibration, for
determining the damage happened in the structure. By using the flexibility method,
the damage identification is made through the change of data frequency response.
The flexibility F can be determined by using several kinds of basic modes of following
basic modal parameters [11∼13].

F =

N∑
m=1

1

(wm)
2φmφ

T
mN . (21)

Where, φm is the normalized mode of m order concerning the modal frequency
wm, and N is the number of low-frequency modes applied in the deduction process.

4.2. (DLV)Damage locating vector

The damage locating vector can be defined as the null space basis of flexibility
change, so that, the calculation can be made not by reference to the modal structure,
but according to the measured data. The stress field for locating the damage can be
calculated by virtue of specific structure mode, but meanwhile, the damage location
with DLV technology also cannot avoid the existence of model error. The advantage
of DLV method needn’t to measure all freedom structure responses, although few
sensors may give rise to limited damage detection capacity. However, this method is
of certain insensitivity for the error source, for the reason that only the topological
structure and relative stiffness parameter are used for stress calculation. Normally,
DLV technology can be applied on the basis of mode truncation and be of the ability
to process single or multiple damage scenarios for sensor nodes at any quantity.

Firstly, the flexibility matrixes at the sensor position can be built according to
the measurement data before and after damage, which can respectively expressed
as FU and FD. Then, through the derivation of flexibility difference, the variation
form of flexibility can be obtained as follows [14∼15]:

F∆ = FU − FD . (22)

Bernhardt develops a kind of common damage location method for extracting
the flexibility variation of spatial information. The damage locating vector DLVs
can be obtained SVD decomposition of F∆, with form as:

F∆ = USV T = [U1,U0]

[
s1 0
0 0

] [
V T

1

V0

]
. (23)
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A vector can be extracted from the diagonal element or every line of maximum
absolute value in F∆, and the damage location can be made on this basis, by virtue
of SVD characteristics: [

V T
1

V0

]
[V1 V0] = I . (24)

Where, I is the unit matrix. The Formula (19) can be rewritten as:

[F∆V1 F∆V0] = [U1S1 0] . (25)

According to the above formula, obtain:

F∆V0 = 0 . (26)

In order to make DLV selection in V , define:

svni =

√
sic2i
sqc2q

. (27)

Where, sqc2q = max
(
sic

2
i

)
and i= 1, 2, · · · ,m; by virtue of the maximum value of

sic
2
i given by q of index i, m is the quantity of lines in V ; si is the ith singular value

of matrix F∆; ci is the constant to normalize the maximum characteristic stress of
undamaged structural elements, which is correlate to the static load ciVi, equal to 1.
If svni ≤ 0.20, the vector Vi can be taken as DLV. Then, make damage location for
the unknown damage structure by virtue of DLV, and calculate the characteristic
stress of every structure unit. For every DLV vector, the normalized stress σ̄i in
element i can be defined as:

σ̄i = σi/σq . (28)

Where, σi is the element stress given by every cross-section stress, σq = max (σi)
and i = 1, 2, · · · ,m. q is the index i corresponding to the maximum value of σi. In
order to strengthen the algorithm robustness, multi-DLVs information fusion method
can be adopted:

WSI =

∑ndlv
i=1 σ̄i/E (svni)

ndlv
(29)

Where, ndlv is the number of DLVs, and the elements with damage determined
are WSI < 1 and E (svni) = max (svn, 0.015). See Algorithm 1 for the damage
detection and location steps.
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Algorithm 1: Damage detection and location

1. procedure MODE SHAPE IDENTIFICATION xi (t), δti, βti

2. %xi measured acceleration value; TSE of δti local node; TSE of βti centralized node

3. Xi (p)← FFT (xi (t));

4. X̃i (p)← FFT (xi (t+ δti));

5. Ỹi (p)← X̃i (p+ βpi);

6. D (wm)← csd (X1, X2, · · · , Xn);

7. SV D (D (wm)D (wm)∗) = U
∑∑∗ U∗;

8. return φi

9. procedure DAMAGE LOCALIZATION φi, wi

10. F ←
N∑
i=1

1
(wi)

2 φiφ
T
i ;

11. (DLV )F∆ ← FU − FD;

12. SV D (F∆)← U
∑∑∗ U∗;

13. svni =

√
sic

2
i

maxk(skc2k)
, i = 1, 2, · · · ,m;

14. WSI =
∑ndlv
i=1 σ̄i/E(svni)

ndlv
;

15. if (WSI < 1) then

16. return Structure damaged

17. else

18. return Structure undamaged

5. Experimental analysis

5.1. Experiment setting

The three-span bridge is considered, which is built by virtue of Matlab structural
dynamics tool kit, consisting of 150 nodes and 182 elements. The bridge surface is
set to be 80m long and 8m wide, including two traffic lanes. The bridge is made
of steel, with Young modulus and shear elasticity modulus respectively set to be
210GPa and 80GPA. The properties of main materials used in the experiment are
listed in the Table 1. However, if the bridge is damaged or corroded, these two
parameters will decrease following the damage or corrosion degrees. This system is
stimulated by the even pressure acting on the whole bridge surface, and the bridge
motion is only restricted to the plane vibration. The left and right edges as well as
three pier bases of bridge surface are fixed.
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Table 1. Material characteristics of steel

Sympbol Value Unit Physical description

Nu 0.285 Poisson’s ratio
E 210000000000 Pa Young’s

G 81712062256 Pa Shear
Rho 7800 Kg/m3 Density

Alpha 0 /oC Thermal

Eta 0 Loss factor
T0 20 oC Reference

In order to monitor the bridge status, set 36 tri-axis accelerometers on the upper
and bottom surfaces of bridge, as well as the juncture between the bridge surface
and pier. Sensor sampling frequency is set at 5Hz. Every sensor records 5 groups of
acceleration data per 1s. Hence, during the monitoring period, the data recorded by
one sensor can be deemed as the one-dimensional vector, while the data collected by
36 groups of sensors can constitute the matrix. These sensor data are original data
and can be used after feature extraction.

The bridge condition in the real world may easily be influenced by the environ-
ment factors, such as wind, temperature, humidity and even the slight disturbance,
which may cause the change of acceleration data collected by the sensor. For the
purpose of enabling the experiment to be real to the greatest extent, all environmen-
tal noise obeys the Gaussian distribution with zero mean and standard deviation.
The reason is that, all environmental factors cannot be listed out and the leading
role of factor cannot be determined, so that the safest method is assuming all fac-
tors obey the Gaussian distribution. Based on above assumptions, aiming at every
sample datum, the environmental noise is added by:

αi (t) = αi (t) +N (0, σ) (t) . (30)

Where, αi (t) is the acceleration data measured by the sensor i at the time t.
N (0, σ) is the Gaussian random variable with mean value 0 and variance σ. σ = 1
and σ = 0.5 are respectively considered in the experiment.

Make original data sampling at every sensor node. TSE δti is considered to be
a random variable within following sections: [0, 10/Fs], [0, 20/Fs] and [0, 30/Fs],
which also an measure the FFT frequency sampling during the transmission period.
In this experiment, set n = 25 sensor nodes in the wireless sensor network. What
TSE concerns are front 14 data samples of original sampling data – δti =[5, 1, 14, 14,
19, 8, 11, 17, 1, 2, 11, 14, 1, 8]ti, as well as the FFT frequency samples transmitted
to the central unit –βti =[0; 2; 1; 4; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0]ti.

In this paper, simulate the time series and response by using 10,000 acceleration
points which are generated by virtue of famous integral method. For the semi-local
processing process, TSE, incurred during the transmission process of FFT frequency
sampling from the sensor node to the central unit, can be deemed as random variable:
[0, 10/Fs], [0, 20/Fs] and [0, 30/Fs]. Next, analyze the simulated time series and
response by applying the semi-local and centralized processing FDD method.
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During the experiment process, the evaluation on influence of TSE on modal
identification and damage detection is considered. During the process of original
data acquisition of every sensor node, TSE is δti. During the original data acquisition
process, TSE δti can be deemed as the uniform random variable within the section
[0, 20/Fs]. The simulated TSE relevant to the FFT frequency sampling transmitted
to the central unit is [βp1;βp2; · · · ;βp25] = [0; 2; 1; 4;021]/Fs, of which 021 is 21D
0-element vector. The power spectrum density of semi-local processing center unit
signal is given in the Fig.4.

In the figure, limited by the space, only four sensor nodes are tested hereof. The
FFT frequency sampling transmitted from the sensor node to the central node has
similar frequency deviation.

Frequency  (s)
 

  
Fig. 4. Power spectrum density of incompletely synchronous response of local

processing

5.2. Damage location and time synchronization error

Because TSE error can give rise to the distortion of identified mode shape, the de-
termination of power spectrum density of output response as shown by the algorithm
in Literature [15] is the improved FFT method based on incomplete synchronization
samples, which is a kind of typical centralized method. The parameter settings of
two algorithms: , an . The comparison results of deficiency damage detection prob-
ability and destruction detection probability of the algorithms in this paper and the
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Literature [15] are as shown in Fig.5.
From the result in Fig.5, it can be known that, compared with the algorithm of

Literature [15], both of the deficiency damage detection probability and destruction
detection probability have smaller probability values, showing higher detection ac-
curacy of algorithm in this paper. Meanwhile, it can be seen that, in cases of and,
the deficiency damage detection probability index of the algorithm in this paper is
different from that of its destruction detection probability index. It can be seen that,
βpi = 30/Fs is of higher deficiency damage detection probability and destruction
detection probability than βpi = 10/Fs, as well as poorer detection effect.

 

(a) Deficiency damage detection probability 

 

(b) Destruction detection probability 

Fig. 5. Damage detection probability 
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Fig. 5. Damage detection probability

5.3. Performance influence of FFT output length

The first step of modal analysis is from the FFT calculation of measured original
data. In this part, we research the FFT frequency resolution method of modal anal-
ysis and carry out the similarity test of complete and incomplete synchronization.
Assume the transmission of a group of original data packages with length of L = 2048
and sampling frequency of Fs = 200Hz. Define Fs/Nf as

{
Fs
256 ,

Fs
512 ,

Fs
1024

}
, adjust

the FFT frequency resolution. According to the time migration derivative and its
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influence on frequency error in the semi-local modal identification, it can be proved
that, if considering the time migration of ∆n samples, FFT value will be translated
for ∆n samples, of which ∆p = ∆nNf/Fs. The comparison of deficiency damage de-
tection probability and destruction detection probability in different valuation cases
is as shown in Fig.6.

In Fig.6, in the semi-local modal identification algorithm, the influence of FFT
output length on deficiency damage detection probability (see Fig.4a) and destruc-
tion detection probability (see Fig.4b) is given, of which TSE can be defined as:
δti = 10/Fs and βpi ∈ {10/Fs, 30/Fs}. Two main conclusions can be obtained:
(1) When using low-resolution FFT algorithm, the damage cannot be detected out,
mainly for the performance degradation of modal identification algorithm caused
by lower Nf valuation; (2) The higher the TSE value is taken, the higher the false
dismissal probability is caused. Where Nf = 1024 can be accepted, for the reason
that the detection probability in such valuation does not decrease sharply, and the
balance between the data size and detection accuracy can be realized.

 

(a) Deficiency damage detection probability 

 

(b) Destruction detection probability 

Fig. 6. Performance impact of FFT output length 

 

 

Fig. 6. Performance impact of FFT output length

6. Conclusions

Aiming at the bridge structure health, by equipping with wireless sensor network,
the semi-local TSE robustness detection method of bridge structure health based on
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damage flexibility method is built. In order to reduce the data transmission from
the sensor node to the central unit, by virtue of semi-local processing method, make
local processing for the data of every sensor node, conduct the fast Fourier transform
for the detected vibration signals, transmit the acquired FFT value to the central
unit or cluster head for further processing, and achieve the damage signal detection
and location through the flexibility method, to obtain the better damage detection
effect.
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